

SCHULCURRICULUM

Mathematik

Qualifikationsphase (Jahrgangsstufen 11 und 12)

März 2016

Vorwort

Das vorliegende Curriculum wurde von der regionalen Abituraufgabenkommission

Mathematik im Auftrag der pädagogischen Beiräte der Regionen Ostasien und Südostasien

erarbeitet auf der Basis des Kerncurriculum für die gymnasiale Oberstufe an Deutschen

Auslandsschulen. Die aufgelisteten inhaltsbezogenen Kompetenzen und zugeordneten

Inhalte sind verbindlich zu unterrichten. Die fächerübergreifenden Hinweise und diejenigen

zum Methodencurriculum müssen von den Schulen individuell an die Bedürfnisse

angepasst eingearbeitet werden.

Das Curriculum bildet Kompetenzen und Inhalte auf einem erhöhten Anforderungsniveau

ab.

Stand: 06.03.2016

Vorbemerkung¹

Der Auftrag einer zeitgemäßen schulischen Bildung geht über die Vermittlung von Wissen hinaus. Er zielt auf Persönlichkeitsentwicklung und Weltorientierung, die sich aus der Begegnung und Beschäftigung mit zentralen Aspekten des kulturellen Lebens ergeben. Schülerinnen und Schüler sollen in die Lage versetzt werden, ihr berufliches und privates Leben verantwortungsbewusst zu gestalten und am kulturellen, gesellschaftlichen und politischen Leben teilnehmen zu können. In diesem Zusammenhang vermitteln die Lehrkräfte an den Deutschen Auslandsschulen und Deutschen Abteilungen die deutsche Sprache und Kultur sowie ein wirklichkeitsgerechtes Deutschlandbild. Unterrichtsziel ist es unter anderem, Interesse und Aufgeschlossenheit für die Kultur, die Geschichte und die Politik der Bundesrepublik Deutschland zu wecken und zur Verständigung zwischen Bürgerinnen und Bürgern des Sitzlands und Deutschlands aktiv beizutragen. Vor dem Hintergrund der Auswärtigen Kultur- und Bildungspoliti geht es in besonderem Maße um den Erwerb interkultureller und kommunikativer Kompetenz.

Kompetenzen beschreiben Dispositionen zur Bewältigung bestimmter Anforderungen. Solche Kompetenzen sind fach- und lernbereichsspezifisch ausformuliert, da sie an bestimmten Inhalten erworben werden. Es gehört auch zu den Zielen schulischer Bildung, sprachliche, kommunikative, methodische, soziale und personale Kompetenz zu vermitteln. Die verschiedenen Kompetenzen stehen dabei in keinem hierarchischen Verhältnis zueinander; sie bedingen, durchdringen und ergänzen sich gegenseitig. Insbesondere in der gymnasialen Oberstufe erwerben Schülerinnen und Schüler das allgemeine und fachspezifische Wissen und Können für eine erfolgreiche Gestaltung ihrer Zukunft und auf Ausbildung. Studium und Beruf vorbereitet. lm Sinne werden einer wissenschaftspropädeutischen Bildung ist der Unterricht in der gymnasialen Oberstufe ausgerichtet auf den Erwerb fachlich-methodischer Kompetenzen und die Einführung in wissenschaftliche Fragestellungen, Modelle und Verfahren. Im Unterricht in der gymnasialen Oberstufe geht es darüber hinaus um die Beherrschung von Arbeitsweisen zur systematischen Beschaffung, Strukturierung und Nutzung von Informationen und Materialien. Mittels Strategien, die Selbstständigkeit und Eigenverantwortlichkeit sowie Team- und Kommunikationsfähigkeit unterstützen, sollen die Schülerinnen und Schüler in die Lage versetzt werden, in zunehmender Weise Verantwortung für ihr Handeln zu übernehmen. Diese Zielsetzungen machen es erforderlich, dass Lehrkräfte sich im Sinne

¹ Entnommen aus: Kerncurriculum für die gymnasiale Oberstufe an Deutschen Auslandsschulen im Fach Mathematik (Beschluss der Kultusministerkonferenz vom 29.04.2010 i.d.F. vom 10.09.2015

eines zeitgemäßen Unterrichts intentional und auf die Bedürfnisse der jeweiligen Situation und Lerngruppe bezogen für die richtigen Arbeits- und Unterrichtsformen entscheiden. Das vorliegende Schulcurriculum im Fach Mathematik bildet Kompetenzen und Inhalte auf einem erhöhten Anforderungsniveau ab. Der Unterricht in diesen Fächern hat eine wissenschaftspropädeutische Bildung zum Ziel, die exemplarisch vertieft wird. Das Anforderungsniveau kann aus den Einheitlichen Anforderungen für die Abiturprüfung (EPA), den "Bildungsstandards für die Allgemeine Hochschulreife" und aus darin veröffentlichten Musteraufgaben abgeleitet werden.

1. Fachpräambel²

Zentrale Aufgaben des Faches Mathematik an Deutschen Schulen im Ausland

Der Mathematikunterricht in der Oberstufe orientiert sich an vier zentralen Zielen:

- Die Schülerinnen und Schüler erwerben mathematische Kompetenzen, mit denen sie Situationen des Alltags, des gesellschaftlichen Lebens und ihres zukünftigen Berufsfeldes bewältigen können.
- Die Schülerinnen und Schüler erkennen die Bedeutung, die der Mathematik und dem mathematischen Denken in der Welt zukommt und erhalten so die Möglichkeit, ihren Wert schätzen zu lernen. Die Schülerinnen und Schüler erwerben Kompetenzen, die sie für ein Hochschulstudium, insbesondere in mathematiknahen Studiengängen benötigen. Sie rekonstruieren dabei in propädeutischer Weise Strukturen und Prozesse wissenschaftlichen Denkens und Arbeitens.
- Die Schülerinnen und Schüler erwerben Kompetenzen, um mathematische Probleme zu lösen. Dabei entwickeln sie Techniken und Strategien, die auch außerhalb der Mathematik von Bedeutung sind.
- Der Erwerb von Kompetenzen umfasst neben dem Aufbau von Fähigkeiten und Fertigkeiten auch die Entwicklung der Bereitschaft, diese Fähigkeiten und Fertigkeiten für ein wirksames und verantwortliches Handeln einzusetzen.

Zur mathematischen Bildung gehört somit auch die Fähigkeit, mathematische Fragestellungen im Alltag zu erkennen, mathematisches Wissen und Können funktional und flexibel zur Bearbeitung vielfältiger Probleme einzusetzen und unter Beachtung der Möglichkeiten und Grenzen der Mathematik begründete Urteile abzugeben. Diese

² ebenda

gegenüber früheren Bildungsplänen erhöhten Anforderungen gehen einher mit einer geringeren Betonung formaler Fertigkeiten. Dies wird ermöglicht durch den reflektierten Einsatz von elektronischen Rechenhilfsmitteln. Grafikfähige Taschenrechner, Rechner mit Computeralgebrasystemen und anderen Programmen wie Tabellenkalkulation oder Simulationssoftware können als Hilfsmittel dienen, aber auch als didaktisches Werkzeug und als Anregung, sich selbstständig und produktiv mit mathematischen Problemen zu befassen.

Kompetenzerwerb im Fach Mathematik

Die folgenden Standards im Fach Mathematik benennen sowohl allgemeine als auch inhaltsbezogene mathematische Kompetenzen, die Schülerinnen und Schüler in aktiver Auseinandersetzung mit vielfältigen mathematischen Inhalten und Aufgabenstellungen im Unterricht erwerben sollen.

Bei den allgemeinen mathematischen Kompetenzen handelt es sich um

- · mathematisch argumentieren
- Probleme mathematisch lösen
- mathematisch modellieren
- mathematische Darstellungen verwenden
- mit Mathematik symbolisch/formal/technisch umgehen
- kommunizieren über Mathematik und mithilfe der Mathematik

Die inhaltsbezogenen mathematischen Kompetenzen sind geordnet nach den Leitideen

- Algorithmus und Zahl
- Messen
- Raum und Form
- funktionaler Zusammenhang
- Daten und Zufall

Durch die Gestaltung des Unterrichts erwerben die Schülerinnen und Schüler parallel zu den allgemeinen und den inhaltlichen mathematischen Kompetenzen auch methodisch strategische, sozial-kommunikative und personale Kompetenzen.

Didaktische Prinzipen

Der Mathematikunterricht in der Qualifikationsphase ist gekennzeichnet durch eine zunehmende Wissenschaftsorientierung und schafft so die Voraussetzungen für ein erfolgreiches Studium. Die Schülerinnen und Schüler lernen, Begriffe präzise zu definieren, komplexere Verfahren zu entwickeln und anzuwenden sowie aufwändigere Beweise nachzuvollziehen und auch selbst durchzuführen.

Im Unterricht werden vermehrt Phasen des selbstständigen Erarbeitens von Basiswissen und Basisfertigkeiten, Phasen des kooperativen Lernens und Phasen mit offeneren Problemstellungen bis hin zum projektorientierten Unterricht eingeplant. Die Schülerinnen und Schülern erwerben dabei personale Kompetenzen wie Durchhaltevermögen und Selbstkritik, sozial-kommunikative Kompetenzen wie Arbeiten im Team sowie methodischstrategische Kompetenzen wie Arbeitsplanung und Präsentation von Sachverhalten und Lösungswegen in schriftlicher und mündlicher Form.

Zur Bearbeitung komplexerer Fragestellungen stehen den Schülerinnen und Schülern elektronische Rechenhilfsmittel und Formelsammlungen zur Verfügung, elementare Aufgabenstellungen müssen aber auch ohne diese Hilfsmittel bearbeitet werden können.

Zentrale Leitideen in der Qualifikationsphase sind der "funktionale Zusammenhang" und die "mathematische Modellierung". Die Funktionskompetenz der Schülerinnen und Schüler erfährt hier eine wesentliche Erweiterung und Vertiefung durch Einführung neuer Funktionsklassen, neuer Begriffe und neuer Verfahren, die zur Modellierung von Sachverhalten innerhalb und außerhalb der Mathematik verwendet werden.

2. Zu erbwerbende Kompetenzen und Inhalte in der Qualifikationsphase

Kompetenzen: Inhaltsbezogene mathematische Kompetenzen

gegliedert nach den fünf zentralen Leitideen

Themen/Inhalte: den Kompetenzen zugeordnete Inhalte/Themengebiete. Die

Nummerierung schreibt keine verbindliche Abfolge vor.

Fakultative/schulinterne Inhalte sind grau hinterlegt.

Zeit: Richtwert der Unterrichtszeit in Unterrichtsstunden pro

Inhaltsgebiet ohne fakultative Inhalte

Schulspezifische Ergänzungen

und Hinweise zum Methodencurriculum

Kompetenzen Die Schülerinnen und Schüler können	Inhalte	Zeit [h]	Schulspezifische Ergänzungen und Hinweise zum Methoden-
No			curriculum
Leitidee Algorithmus und Zahl den Grenzwertbegriff verstehen und erläutern. Grenzwerte auf der Grundlage eines propädeutischen Grenzwertbegriffes bestimmen (kein rechnerischer Nachweis eines Grenzwertes über Epsilon-Umgebungen erforderlich). Leitidee Funktionaler Zusammenhänge	1. Grenzwerte 1.1 Definition von Zahlenfolgen 1.2 Explizite und rekursive Darstellung von Zahlenfolgen 1.3 Monotonie, Beschränktheit und Grenzwert von Zahlenfolgen 1.4 Grenzwerte von Funktionen 1.5 Eulersche Zahl als Grenzwert	10	Curriculum
 diskrete Zusammenhänge beschreiben. 	OTOTIZWOTC		
 Leitidee funktionaler Zusammenhang Die Ableitung mithilfe der Approximation durch lineare Funktionen deuten zusammengesetzte Funktionen ableiten. besondere Eigenschaften von Funktionen rechnerisch und mithilfe des WTR/GTR bestimmen. inner- und außermathematische Sachverhalte auch in komplexeren Zusammenhängen mathematisch modellieren. 	 2. Ableitungen 2.1 Höhere Ableitungen 2.2 Produktregel, 2.3 Kettenregel Anwendungen der Differentialrechnung: 2.4 Extrempunkte und Wendepunkte 2.5 Extremwertprobleme 	25	Quotientenregel

	T		
Leitidee funktionaler	3. Integralrechnung	40	Leitidee Algorithmus
Zusammenhang	3.1 Bestimmtes Integral		und Zahl
• in einfachen Fällen	3.2 Stammfunktionen für die		den
Stammfunktionen bestimmen	Grundfunktionen der		Grenzwertaspekt
und mittels Stammfunktionen	Funktionsklassen lt. 4.2		des Integrals
integrieren	3.3 Integrale,		verstehen und
	Integralfunktionen und		erläutern.
Leitidee Messen	Hauptsatz der Differential-		
Flächeninhalte und Rauminhalte	und Integralrechnung inkl.		
bei krummlinig begrenzten	geometrisch-anschauliche		partielle Integration
Flächen und Körpern bestimmen.	Begründung		nichtlineare
Bestände aus gegebenen	3.4 Integrationsverfahren		Substitution
mittleren und momentanen	(konstanter Faktor,		
Änderungsraten konstruieren.	Summe, lineare		
, indorangorator nonoticioto	Substitution)		
	Anwendungen der		
	Integralrechnung		
	3.5 Inhalte von Flächen		
	unterhalb eines Graphen		
	und zwischen zwei		
	Graphen, Volumina von		
	Rotationskörpern, die um		
	die x-Achse rotieren)		
	3.6. Flächen und Körper, die		
	ins Unendliche reichen		
Leitidee funktionaler	4. Eigenschaften von	50	
Zusammenhang	Funktionen		
einfache Graphen von Hand	4.1 Einfache		
skizzieren, für exakte	zusammengesetzte		z. B. allgemeine
Zeichnungen Hilfsmittel	Funktionen (Summe,		Achsen- und
einsetzen.	Differenz, Produkt,		Punktsymmetrie
 charakteristische Eigenschaften 	Quotient, Verkettung)		
von Funktionen bestimmen.	4.2 Untersuchung folgender		
	Funktionenklassen		Ortskurven
	ganzrationale Funktionen,		
Sachverhalte auch in			

komplexeren

- Zusammenhängen mathematisch modellieren.
- natürlicheExponentialfunktion
- natürliche
 Logarithmusfunktion
 auf die folgenden charakteristischen Eigenschaften in
 verschiedenen Kontexten:
 - Gemeinsame Punkte mit den Koordinatenachsen
 - Punktsymmetrie zum Ursprung,
 - Symmetrie zur y-Achse,
 - Monotonie(Extrempunkte)
 - Krümmung(Wendepunkte)
 - Grenzwerte von Funktionen
 - Verhalten von
 Funktionen an den
 Rändern der
 Definitionsmenge;
 senkrechten und
 waagrechten
 Asymptoten

(An eine vollständige, systematische Funktionsuntersuchung als eigenständige Aufgabe ist dabei nicht gedacht.)

- 4.3 Funktionsanpassung/Rekonstruktionen
- 4.4 N\u00e4herungsverfahren zur Bestimmung von Nullstellen
- 4.5 Funktionenscharen

Leitidee funktionaler Zusammenhang inner- und außermathematische Sachverhalte auch in komplexeren Zusammenhängen mathematisch modellieren.	5. Wachstum5.1 Differenzialgleichungen für exponentielles und beschränktes Wachstums	15	5.2 Modellierung des logistischen Wachstums
 Leitidee Form und Raum kennen Lösungsverfahren für lineare Gleichungssysteme, können sie anwenden (auch mit Rechenhilfsmitteln) und die Ergebnisse geometrisch interpretieren. Leitidee Algorithmus und Zahl Einfache Sachverhalt mit Tupeln oder Matrizen beschreiben. 	 6. Lineare Gleichungssysteme 6.1 Lösen linearer Gleichungssysteme inkl. Gauß-Verfahren 6.2 Anwendungen linearer Gleichungssysteme außerhalb der Geometrie 	10	
 Leitidee Form und Raum geometrische Objekte im Raum vektoriell bzw. analytisch beschreiben und ihre Lagebeziehungen untersuchen. Leitidee Messen Längen, Abstände, Winkelgrößen, Flächeninhalte und Rauminhalte bestimmen mithilfe von Koordinaten und Vektoren 	 7. Vektoren 7.1 Lineare Abhängigkeit und Unabhängigkeit von Vektoren 7.2 Betrag eines Vektors, Skalar- und Vektorprodukt von Vektoren inkl. geometrischer Deutung, Winkel zwischen zwei Vektoren 7.3 Flächen- und Rauminhalts- berechnungen 	20	

Leitidee Raum und Form	8. Geraden und Ebenen	40	
geometrische Objekte im Raum	8.1 Verschiedene Formen der		
vektoriell beziehungsweise	Ebenengleichung:		8.5 Spiegelungen
analytisch beschreiben und ihre	Koordinatenform,		und Symmetrie
Lagebeziehungen analysieren.	Normalenform und		8.6 Beweisen mit
Eigenschaften von	Parameterform		Hilfe von
geometrischen Objekten und	8.2 Darstellung von Ebenen		
Beziehungen zwischen	im Koordinatensystem		
geometrischen Objekten	8.3 Lagebeziehungen,		
beschreiben und berechnen.	zwischen, Geraden und		
	Ebenen (Gerade-Gerade,		
Leitidee Messen	Gerade- Ebene, Ebene-		
Längen, Abstände,	Ebene)		
Winkelgrößen, Flächeninhalte	8.4 Abstand zwischen zwei		
und Rauminhalte bestimmen	Punkten, zwei Geraden		
mithilfe von Koordinaten und	(parallel oder windschief),		
Vektoren	zwischen einem Punkt und		
	einer Geraden bzw. einer		
	Ebene, zwischen einer		
	Geraden und Ebene und		
	zwei Ebenen		
Leitidee Daten und Zufall	9. Wahrscheinlichkeit	45	
wichtige kombinatorische	9.1 Abzählverfahren der	10	
Hilfsmittel in realen Kontexten	Kombinatorik;		
anwenden.	grundlegende		
	Berechnungsformeln		
Zufallsexperimente mit Hilfe von dielenten und stationen.	9.2 Unabhängigkeit von		
diskreten und stetigen	Ereignissen und bedingte		
Zufallsgrößen charakterisieren.	Wahrscheinlichkeit		
Binomialverteilungen und	9.3 Definition einer		
Normalverteilungen in	Wahrscheinlichkeits-		
Anwendungskontexten	verteilung		
beschreiben und nutzen.	9.4 Bernoulli-Ketten und		
das Aufstellen und Testen von	Binomialverteilung		
Hypothesen in binomialen	Dinomicroftonding		

Modellen verstehen und	9.5 Normalverteilte
anwenden.	Zufallsgrößen
• Fehler 1. und 2. Art verstehen	(Untersuchung
und in Anwendungssituationen	stochastischer
berechnen (Verwendung von	Problemstellungen;
GTR, CAS, Tabellenkalkulation)	Glockenform)
	9.6 Erwartungswert, Varianz
	und Standardabweichung
	von binomial- und
	normalverteilten
	Zufallsvariablen
	9.7 Testen von Hypothesen:
	Konfidenzintervalle;
	Irrtumswahrscheinlichkeit;
	Alternativtest und
	Signifikanztest

Anlagen:

- Hinweise zur Leistungsbeurteilung
- Operatorenliste der KMK
- Abiturprüfung an Deutschen Schulen im Ausland Fachspezifische Hinweise für die Erstellung und Bewertung der Aufgabenvorschläge im Fach MATHEMATIK

Anhang zum Schulcurriculum

Hinweise zur Leistungsbewertung

Die Grundlagen der Leistungsbewertung im Fach Mathematik beschließt die Fachkonferenz Mathematik der Deutschen Auslandsschule auf der Grundlage der Beschlüsse der Gesamtkonferenz und insbesondere auf Grundlage der Richtlinien für die Ordnung zur Erlangung der Allgemeinen Hochschulreife an Deutschen Schulen im Ausland - "Deutsches Internationales Abitur" - (§1.7) in der jeweils gültigen Fassung. Darüber werden berücksichtigt die Hinweise zur Leistungsbewertung in der Qualifikationsphase an den Anforderungen in der schriftlichen Prüfung der DIA (Ordnung der deutschen internationalen Abiturprüfung an deutschen Auslandsschulen, §25) sowie den Bildungsstandards Mathematik und den Fachspezifische Hinweise für die Erstellung und Bewertung der Aufgabenvorschläge

im Fach MATHEMATIK in den jeweils gültigen Fassungen.

Die Ergebnisse der Halbjahresklausuren und die fortlaufend im Unterricht erbrachten Leistungen ergeben etwa zu gleichen Teilen die Punktzahl für das Halbjahreszeugnis.

Sonstige Leistungen

Die sonstigen Leistungen werden ermittelt aus den laufenden Unterrichtsbeitragen, mündlichen Abfragen, selbständigen Präsentationen, sowie auch unangekündigten Kurztests. Die Schüler werden zu Beginn der Qualifikationsphase vom Fachlehrer hierüber informiert.

Schriftliche Leistungsnachweise

In den ersten drei Halbjahren der Qualifikationsphase werden pro Halbjahr zwei Klausuren geschrieben, im letzten Halbjahr eine Klausur.

Im ersten Jahr der Qualifikationsphase beträgt die Dauer der Klausuren zwei bis drei Unterrichtsstunden, im zweiten Jahr in der Regel drei Unterrichtsstunden. Eine der beiden Klausuren im dritten Halbjahr wird unter Prüfungsbedingungen (insbesondere über drei Zeitstunden) geschrieben.

Für die Bewertung sind sowohl die rein formale Lösung als auch das zum Ausdruck gebrachte Verständnis maßgebend. Daher sind erläuternde, kommentierende und begründende Texte unverzichtbare Bestandteile einer schriftlichen Leistung im Fach Mathematik. Mangelhafte Gliederung, Fehler in der Fachsprache, Ungenauigkeit in

Zeichnungen oder unzureichende oder falsche Bezüge zwischen Zeichnungen und Texten sind als fachliche Fehler zu werten.

Formal und inhaltlich werden die Anforderungen sukzessiv an die Leistungserwartungen in der Deutschen Internationalen Abiturprüfung angepasst. Gleiches gilt für die Korrektur und Bewertung. Insbesondere ist hierbei auf eine angemessene Gewichtung der Anforderungsbereiche zu achten. Wegen des erhöhten Anforderungsniveaus gilt: "Der Schwerpunkt der zu erbringenden Prüfungsleistungen liegt im Anforderungsbereich II. Darüber hinaus sind die Anforderungsbereiche I und III zu berücksichtigen. Die Verteilung der Bewertungseinheiten auf die drei Anforderungsbereiche orientiert sich daher an dem Verteilungsschlüssel

AFB I: 20%

AFB II: 50%

AFB III: 30%

(Auszug aus der DIA Ordnung)

<u>Der Anforderungsbereich I</u> umfasst das Wiedergeben von Sachverhalten und Kenntnissen im gelernten Zusammenhang, die Verständnissicherung sowie das Anwenden und Beschreiben geübter Arbeitstechniken und Verfahren.

<u>Der Anforderungsbereich II</u> umfasst das selbstständige Auswählen, Anordnen, Verarbeiten, Erklären und Darstellen bekannter Sachverhalte unter vorgegebenen Gesichtspunkten in einem durch Übung bekannten Zusammenhang und das selbstständige Übertragen und Anwenden des Gelernten auf vergleichbare neue Zusammenhänge und Sachverhalte.

Der Anforderungsbereich III umfasst das Verarbeiten komplexer Sachverhalte mit dem Ziel, zu selbstständigen Lösungen, Gestaltungen oder Deutungen, Folgerungen, Verallgemeinerungen, Begründungen und Wertungen zu gelangen. Dabei wählen die Schülerinnen und Schüler selbstständig geeignete Arbeitstechniken und Verfahren zur Bewältigung der Aufgabe, wenden sie auf eine neue Problemstellung an und reflektieren das eigene Vorgehen.

Die "Bildungsstandards im Fach Mathematik für die Allgemeine Hochschulreife" präzisieren diese allgemeine Definition der Anforderungsbereiche, indem sie die "unterschiedliche kognitiven Ansprüche von kompetenzbezogenen mathematischen Aktivitäten" für die sechs mathematischen Kompetenzbereiche den drei Anforderungsbereichen zuordnen.

Jede Aufgabe kann in Teilaufgaben gegliedert sein, die in Beziehung zueinander stehen sollen. Durch die Gliederung in Teilaufgaben können

- verschiedene Blickrichtungen eröffnet,
- mögliche Vernetzungen gefördert,
- Differenzierungen hinsichtlich des Anforderungsniveaus erreicht werden.

Diese Teilaufgaben sollen unabhängig voneinander lösbar sein, so dass trotz einer Fehlleistung - insbesondere am Anfang - die Bearbeitung weiterer Teile möglich bleibt. Falls erforderlich, können Zwischenergebnisse in der Aufgabenstellung enthalten sein.

Die Aufgabenstellung darf nicht so detailliert sein, dass dadurch ein Lösungsweg zwingend vorgezeichnet wird.

Folgende Arten von Aufgaben oder Teilaufgaben können vorkommen, wobei teilweise Überschneidungen möglich sind:

- Aufgaben, in denen die Ermittlung eines konkreten Einzelergebnisses gefordert wird,
- Darstellung, Erläuterung und sachgerechte Anwendung von mathematischen Begriffen und Verfahren,
- Untersuchung vorgegebener mathematischer Objekte auf ihre Eigenschaften,
- Visualisierung von Sachverhalten und mathematischen Zusammenhängen,
- Konstruktionen (z.B. Anpassung von Funktionen, geometrischer Objekte),
- Problemstellungen, die eine sachgerechte Verwendung von Hilfsmitteln erfordern,
- Auswertung von Informationen,
- Herleitungen, Begründungen und Beweise,
- Modellierung von Sachverhalten,
- Interpretation, Vergleich und Bewertung von Daten, Ergebnissen, Lösungswegen oder Verfahren,
- Übertragung von Ergebnissen einer Untersuchung auf einen anderen Sachverhalt im Sinne der Vernetzung verschiedener Teilgebiete.

Für die Bewertung der schriftlichen Leistungsnachweise wird ein Erwartungshorizont mit Zuordnung der Bewertungseinheiten angefertigt. Die Note wird dabei nach der folgenden Verteilung ermittelt:

sehr gut 100% - 95 %: 15 Punkte;

<95% - 90 %: 14 Punkte;

<90% - 85 %: 13 Punkte;

gut <85% - 80 %: 12 Punkte;

<80% - 75 %: 11 Punkte;

<75% - 70 %: 10 Punkte;

befriedigend <70% - 65 %: 09 Punkte;

<65% - 60 %: 08 Punkte;

<60% - 55 % 07 Punkte:

ausreichend <55% - 50 %: 06 Punkte;

<50% - 45 %: 05 Punkte;

<45% - 40 %: 04 Punkte;

mangelhaft <40% - 34 %: 03 Punkte;

<34% - 27 %: 02 Punkte;

<27% - 20 %: 01 Punkt

ungenügend <20%: 00 Punkte

Liefern Prüflinge zu einer gestellten Aufgabe (z. B. offene Aufgabenstellungen) oder Teilaufgaben Bearbeitungen, die in der Beschreibung der erwarteten Prüfungsleistungen nicht erfasst waren, so sind die erbrachten Leistungen angemessen zu berücksichtigen. Dabei kann der vorgesehene Bewertungsrahmen für die Teilaufgabe nicht überschritten werden.

Operatoren für das Fach Mathematik

(Stand: Oktober 2012)

In der Regel können Operatoren je nach Zusammenhang und unterrichtlichem Vorlauf in jeden der drei Anforderungsbereiche (AFB) eingeordnet werden; hier soll der überwiegend in Betracht kommende Anforderungsbereich genannt werden. Die erwarteten Leistungen können durch zusätzliche Angabe in der Aufgabenstellung präzisiert werden.

Operator	Definition	Beispiel	
Anforderungsbereich I			
angeben,	Objekte, Sachverhalte, Begriffe oder Daten	Geben Sie drei	
nennen	ohne nähere Erläuterungen, Begründungen	Punkte an, die in der	
	und ohne Darstellung von Lösungsansätzen	Ebene E liegen.	
	oder Lösungswegen aufzählen		
beschreiben	Strukturen, Sachverhalte oder Verfahren in	Beschreiben Sie den	
	eigenen Worten unter Berücksichtigung der	Verlauf des Graphen	
	Fachsprache sprachlich angemessen	von f im Diagramm.	
	wiedergeben	Beschreiben Sie	
		Ihren Lösungsweg.	
belegen	Sachverhalte, Zusammenhänge, Methoden	Erstellen Sie eine	
	oder Daten in übersichtlicher, fachlich	Wertetabelle der	
	sachgerechter oder vorgegebener	Wahrscheinlichkeits-	
	Form darstellen	verteilung.	
zeichnen,	eine maßstäblich hinreichend exakte	Zeichnen Sie den	
graphisch	graphische Darstellung anfertigen	Graphen von f in ein	
darstellen		Koordinatensystem	
		mit geeigneten	
		Längeneinheiten.	
Operator	Definition	Beispiel	
Anforderungsbereich II			
anwenden	eine bekannte Methode auf eine neue	Wenden Sie das	
	Problemstellung beziehen	Verfahren der	
		Polynomdivision an.	
begründen	Sachverhalte unter Nutzung von Regeln und	Begründen Sie, dass	
	mathematischen Beziehungen auf	die Funktion f	

	Gesetzmäßigkeiten bzw. kausale	mindestens einen
	Zusammenhänge zurückführen	Wendepunkt hat.
berechnen	Ergebnisse von einem Ansatz ausgehend	Berechnen Sie die
	durch Rechenoperationen gewinnen; gelernte	Wahrscheinlichkeit
	Algorithmen ausführen	des Ereignisses A.
bestimmen,	Zusammenhänge oder Lösungswege	Bestimmen Sie die
ermitteln	aufzeigen und unter Angabe von	Anzahl der
	Zwischenschritten die Ergebnisse	Nullstellen von f in
	formulieren	Abhängigkeit vom
		Parameter k.
darstellen	Sachverhalte, Zusammenhänge, Methoden	Stellen Sie die
	oder Verfahren in fachtypischer Weise	Beziehung zwischen
	strukturiert wiedergeben	den Werten der
		Integralfunktion und
		dem Verlauf des
		Graphen von f dar.
entscheiden	sich bei Alternativen eindeutig und begründet	Entscheiden Sie,
	auf eine Möglichkeit festlegen	welche der Geraden
		die Tangente an den
		Graphen im Punkt P
		ist.
erklären	Sachverhalte mit Hilfe eigener Kenntnisse	Erklären Sie das
	verständlich und nachvollziehbar machen und	Auftreten der beiden
	begründet in Zusammenhänge	Lösungen.
	einordnen	
erläutern	einen Sachverhalt durch zusätzliche	Erläutern Sie die
	Informationen Veranschaulichen	Aussage des Satzes
		anhand eines
		Beispiels.

gliedern	Sachverhalte unter Benennung des	Gliedern Sie den
	verwendeten Ordnungsschemas in mehrere	von Ihnen
	Bereiche aufteilen	entwickelten
		Lösungsweg.
herleiten	die Entstehung oder Entwicklung von	Leiten Sie die
	gegebenen oder beschriebenen Sachverhalten	gegebene
	oder Gleichungen aus anderen Sachverhalten	Funktionsgleichung
	darstellen	der Stammfunktion
		her.
Interpretieren,	Phänomene, Strukturen oder Ergebnisse auf	Bestimmen Sie das
deuten	Erklärungsmöglichkeiten untersuchen und	Integral und
	diese unter Bezug auf eine gegebene	interpretieren Sie
	Fragestellung abwägen	den Zahlenwert
		geometrisch.
prüfen	Fragestellungen, Sachverhalte, Probleme nach	Prüfen Sie, ob die
	bestimmten fachlich üblichen bzw. sinnvollen	beiden Graphen
	Kriterien bearbeiten	Berührpunkte
		haben.
skizzieren	die wesentlichen Eigenschaften eines	Skizzieren Sie für
	Objektes, eines Sachverhaltes oder einer	die Parameterwerte
	Struktur graphisch (eventuell auch als	-1, 0 und 1 die
	Freihandskizze) darstellen	Graphen der
		jeweiligen
		Funktionen in ein
		gemeinsames
		Koordinatensystem.
untersuchen	Eigenschaften von Objekten oder Beziehungen	Untersuchen Sie die
	zwischen Objekten anhand fachlicher Kriterien	Lagebeziehung der
	nachweisen	beiden Geraden.
vergleichen	Gemeinsamkeiten, Ähnlichkeiten und	Vergleichen Sie die
	Unterschiede darstellen	beiden
		Lösungsverfahren.

zeigen,	Aussagen unter Nutzung von gültigen	Zeigen Sie, dass die
nachweisen	Schlussregeln, Berechnungen, Herleitungen	beiden gefundenen
	oder logischen Begründungen bestätigen	Vektoren orthogonal
		sind.
Operator	Definition	Beispiel
Anforderungsbere	eich III	
auswerten	Daten, Einzelergebnisse oder andere Elemente	Werten Sie die
	in einen Zusammenhang stellen, ggf. zu einer	Ergebnisse in
	Gesamtaussage zusammenführen und	Abhängigkeit vom
	Schlussfolgerungen ziehen	Parameter k aus.
beurteilen,	zu Sachverhalten eine selbstständige	Beurteilen Sie das
bewerten	Einschätzung unter Verwendung von	beschriebene
	Fachwissen und Fachmethoden formulieren	Verfahren zur
	und begründen	näherungsweisen
		Bestimmung der
		Extremstelle.
beweisen	Aussagen im mathematischen Sinne	Beweisen Sie, dass
	ausgehend von Voraussetzungen unter	die Diagonalen
	Verwendung von bekannten Sätzen und von	eines
	logischen Schlüssen verifizieren	Parallelogramms
		einander halbieren.
verallgemeinern	aus einem beispielhaft erkannten Sachverhalt	Verallgemeinern Sie
	eine erweiterte Aussage formulieren	die für die
		unterschiedlichen
		Parameter gezeigten
		Eigenschaften.
widerlegen	Aussagen im mathematischen Sinne unter	Widerlegen Sie die
	Verwendung von logischen Schlüssen, ggf.	folgende
	durch ein Gegenbeispiel falsifizieren	Behauptung
zusammen-	den inhaltlichen Kern unter Vernachlässigung	Fassen Sie die
fassen	unwesentlicher Details wiedergeben	Eigenschaften der
		Funktionen der
		Funktionenschar fk
		zusammen.